Bilal Islah Stanford GSB Finance

Urban Economics Association October 2021

Intro •0000 Intro •0000

• How do households respond to emergency expenses?

Intro •0000

- How do households respond to emergency expenses?
- What models of consumption-savings can match this data?

Intro •0000

- How do households respond to emergency expenses?
- What models of consumption-savings can match this data?
- What does this mean for policy aimed at aiding households?

Main Findings:

- How do households respond to emergency expenses?
 - Many reduce consumption substantially and incur unpaid credit balances.

Main Findings:

- How do households respond to emergency expenses?
 - Many reduce consumption substantially and incur unpaid credit balances.
- What models of consumption can match this data?
 - ▶ Model with: (1) high time-discount rate and (2) limited borrowing capacity.

Main Findings:

- How do households respond to emergency expenses?
 - Many reduce consumption substantially and incur unpaid credit balances.
- What models of consumption can match this data?
 - ▶ Model with: (1) high time-discount rate and (2) limited borrowing capacity.
- What does this mean for policy aimed at aiding households?
 - ▶ Households prefer availability of credit over insurance.
 - Public transportation lowers exposure to risk.

Motivation: Fed Report on Economic Well-Being of US Households

Figure 1. Would cover a \$400 emergency expense using cash or its equivalent (by survey year)

Figure 2. Other ways individuals would cover a \$400 emergency expense

Why Auto Expenses:

Intro

Transport matters for employment: 85% of Americans commute to work by automobile. Loss of transportation can result in unemployment.

00000

- **Transport matters for employment:** 85% of Americans commute to work by automobile. Loss of transportation can result in unemployment.
- Automobile repair expenses are largely uninsured: Auto insurance coverage is often limited to traffic accidents.

Why Auto Expenses:

- **Transport matters for employment:** 85% of Americans commute to work by automobile. Loss of transportation can result in unemployment.
- Automobile repair expenses are largely uninsured: Auto insurance coverage is often limited to traffic accidents.
- **1 Identification:** Auto related expenses are *transitory* expense shocks.

Related Literature:

- Household finance models that study consumption reponses to predictable income and expense changes.
 - Why do households experience large consumption declines from expected mortgage payment increases? (Jorring 2020)
 Why do households experience large consumption declines from expected ending of II.
 - Why do households experience large consumption declines from expected ending of UI benefits? (Ganong et. al., AER 2019)
- Behavioral models of consumption and savings.
 - Present-bias in pay-day lending and repeat borrowing. (Zinman et al., 2021)
 - Present-bias motivation for matching delayed credit card repayment (Kuchler et. al., JFE 2021)
- Labor economics literature on consequences of medical and transportation expense shocks.
 - How do hospital admissions and out-of-pocket health expenses impact labor income, credit capacity and bankruptcy? (Dobkin et. al., AER 2018)
 - ► How do consequences of traffic violations, fines and license suspensions impact earnings and credit outcomes? (Mello 2018)

- Proprietary credit and checking account data.
 - ► Individual-level transactions
 - ▶ Amount, date, location, category, in-flows and out-flows observable.
 - 23,000 individuals matched on regular observable income and payments to credit card accounts from checking accounts across a cross-section of US banks.
 - ▶ Data from January 1st, 2012 to May 30th, 2016.

- Proprietary credit and checking account data.
 - Individual-level transactions
 - Amount, date, location, category, in-flows and out-flows observable.
 - 23,000 individuals matched on regular observable income and payments to credit card accounts from checking accounts across a cross-section of US banks.
 - ▶ Data from January 1st, 2012 to May 30th, 2016.
- Mean income and consumption match BLS data, except for the bottom 20% of income.
- Checking account balances are unobservable.
 - Identify Low liquid wealth individuals by observing cumulative savings over a rolling 12-month period.
 - ▶ 10% individuals in the sample fit this definition of low liquid wealth.

- Auto repair expenses greater than \$200 occur roughly once every 11 months on average.
 - ▶ Those greater than \$400 occur once every 19 months.
 - ► Annually, close to \$800 on auto repair spending.

- Auto repair expenses greater than \$200 occur roughly once every 11 months on average.
 - ▶ Those greater than \$400 occur once every 19 months.
 - ► Annually, close to \$800 on auto repair spending.
- Individuals living in urban areas with greater public transportation access face this
 risk less often.

- Auto repair expenses greater than \$200 occur roughly once every 11 months on average.
 - ▶ Those greater than \$400 occur once every 19 months.
 - ► Annually, close to \$800 on auto repair spending.
- Individuals living in urban areas with greater public transportation access face this risk less often.
- For low liquid wealth individuals, auto expenses are similar to out-of-pocket medical expenses.

Empirical Design:

I run both an event study and a matched difference-in-difference regression to measure the impact of an auto expense on consumption and credit balances.

$$y_{it} = \beta * \text{auto repair event}_{it} + \sigma_i + \alpha_t + \epsilon_{it}$$
 (1)

$$y_{it} = \sum_{j=-m}^{n} \gamma_j * \text{auto repair event}_{i,t-j} + \sigma_i + \alpha_t + \epsilon_{it}$$
 (2)

$$y_{it} = \delta * \text{treat}_{it} + \gamma * \text{auto repair event}_{it} +$$
 (3)

$$\beta$$
 * auto repair event × treat_{it} + σ_i + α_t + ϵ_{it} (4)

Difference-in-Difference Regression Table

Matched Difference-in-Difference Estimates

Dependent Variables:	Consumption	Credit Card Balance	Auto Repair Expense
Model:	(1)	(2)	(3)
Variables			
1-Month	-0.0928***	0.129***	0.3158***
	(0.0111)	(0.0143)	(800.0)
Fixed-Effects			
Individual	Yes	Yes	Yes
Month	Yes	Yes	Yes
Year	Yes	Yes	Yes
Matched Control	Yes	Yes	Yes

Sample includes only below median income and low liquid wealth individuals. The mean monthly income is $\approx 2200 .

Event-Study Plot

 Low liquid households reduce consumption in the months following the event in order to repay similarly incurred credit card balances.

Consumption Estimates, Borrowing Constraints and Recent Savings

	Non-	savers	Save	ers
	Low BC	High BC	Low BC	High BC
Model:	(1)	(2)	(3)	(4)
Dependent Variables:	Mean (Checking Acco	unt Flow	
Variables				
Matched t_{-6}	-2.49	-3.38	-0.0709	-0.0922
	(0.172)	(0.183)	(0.082)	(0.1199)
Dependent Variables:	Me	an Borrowing	Limit	
Variables				
Matched t_{-6}	0.6946	1.883	0.7239	1.701
	(0.0221)	(0.059)	(0.021)	(0.0534)
Dependent Variables:		Consumption	1	
Variables				
1-Month	-0.115***	-0.121***	-0.0804***	-0.0558*
	(0.0235)	(0.0176)	(0.0172)	(0.0192)
Fixed-Effects				
Individual	Yes	Yes	Yes	Yes
Month	Yes	Yes	Yes	Yes
Year	Yes	Yes	Yes	Yes
Matched Control	Yes	Yes	Yes	Yes

• Low liquid wealth and borrowing constraints drives consumption response.

- Households that are low in liquid wealth reduce consumption and rely on available credit at the time of automobile expenses.
- Under a standard consumption-savings model, this behavior is unexpected. The standard model suggests that households should have enough buffer stock wealth to avoid consumption drops.
- I augment the standard model to explain consumption-savings levels and fit the consumption drop:
 - Very present focused and risk-tolerant household behavior.
 - ② Binding borrowing constraints.

- In each period, a household receives risky income y_t and the realization of an auto expense event e_t .
 - ▶ Auto expense events $e_t \in (maintenance, emergency, normal)$
- In normal states, no auto expense event occurs, the household chooses (c_t, a_t) , consumption and savings, subject to a borrowing constraint $-\underline{a} \leq a_t$, where $\underline{a} \geq 0$, such that:

$$V(m_t, e_t) = \max \mathbb{E}_t \sum_{n=0}^{T-t} \beta^n \frac{c_{t+n}^{(1-
ho)}}{1-
ho}$$

is optimized.

- Furthermore, household cash-on-hand, m_t , evolves each period as:
 - $ightharpoonup m_t = Ra_{t-1} + y_t$

Expense Shock Framework with Endogenous Expenses:

- In the event of an emergency expense, the household has the choice to pay the expense (\tilde{e}_e) in the same period, or face unemployment:
 - Paying the expense means: $m_t = c_t + a_t + \tilde{e}_e$
 - Unemployment means:
 - \star An immediate shock to permanent income of p_{ue} .
 - ★ A constant UI payment of $y_t = y_{ue}$ in each period.
 - \star And a probability, π_{ue} , of transitioning out of unemployment back to a normal state in each period.

Expense Shock Framework with Endogenous Expenses:

- In the event of an emergency expense, the household has the choice to pay the expense (\tilde{e}_e) in the same period, or face unemployment:
 - Paying the expense means: $m_t = c_t + a_t + \tilde{e}_e$
 - Unemployment means:
 - ★ An immediate shock to permanent income of pue.
 - ★ A constant UI payment of $y_t = y_{ue}$ in each period.
 - * And a probability, π_{ue} , of transitioning out of unemployment back to a normal state in each period.
- In the event of a maintenance expense, the household has the chance to pay the expense (\tilde{e}_m) in the same period, or not.
 - Paying the expense means:
 - $\star m_t = c_t + a_t + \tilde{e}_m$.
 - * No chance of an emergency/maintenance shock in the next period.
 - ★ And a probability, π_m of transition back to a normal state in each period, otherwise remaining in a state of no emergency/maintenance shock.
 - ▶ Not paying the expense means returning to a normal state in the next period.

Structural Model and Present-Focus

Consumption and Cash-on-hand Plot

Structural Model Moments

	Ē	$\Delta \bar{m}$	$\Delta \bar{c}_e$	m*	c(m*)
Sample	0.995	033	-0.096	_	_
Model (1): $\beta = 0.4, \rho = 1.1$	1.032	031	-0.097	-0.113	0.948
Model (2): $\beta = 0.9, ho = 1.5$	0.731	0.268	-0.004	27.72	0.966
Model (3): $\beta = 0.9, \rho = 1.5, \pi_e = 0$	0.752	0.247	_	27.01	0.981

Using estimated parameters $\hat{\beta}_1 = 0.302, \, \hat{\beta}_2 = 0.694, \, \hat{\rho}_1 = 1.120, \, \hat{\rho}_2 = 1.232, \, \hat{\pi}_m^s = .971$ to fit $(\bar{c}, \sigma_c, \Delta \bar{m}, \sigma_m, \sigma_{\Delta m}, \Delta \bar{c}_e, \bar{\pi}_m, \bar{\pi}_e)$. Calibrated parameters $-\underline{\underline{a}}^{low} = 1, -\underline{\underline{a}}^{high} = 2$

Consumption and Cash-on-hand Plot

Structural Model Moments

Low BC	Ē	σ_c	$\Delta \bar{m}$	$\sigma_{\Delta m}$	$\Delta \bar{c}_e$	$\bar{\pi}_m$	$\bar{\pi}_e$
Sample	1.095	0.332	-0.097	0.381	-0.115	0.004	0.060
Model	1.019	0.389	-0.054	0.374	-0.099	0.000	0.050
High BC	Ē	σ_c	$\Delta \bar{m}$	$\sigma_{\Delta m}$	$\Delta \bar{c}_e$	$\bar{\pi}_m$	$\bar{\pi}_e$
Sample	0.938	0.339	0.061	0.391	-0.056	0.016	0.049
Model	0.044	0 224	0.010	0.247	0.026	0.010	0.046

Structural Model Event-Study Plot

The model can not only match the t_0 consumption response but also the entire path of consumption.

Insurance

- Household pays a fixed monthly amount so that any expense shock is payed off by the insurer.
- Credit
 - An expansion of borrowing limits for the most-constrained group.
 - The additional credit is also offered at a lower, at cost rate instead of at credit card borrowing rates.
- Alternative Transport
 - A reduction in the frequency of emergency expense risk, which in the data, is a function of total vehicle miles traveled.

Policy Intervention Moments

	Ē	$\Delta \bar{m}$	$\Delta \bar{c}_e$	$\bar{\pi}_m$	$\bar{\pi}_e$
Sample	1.095	-0.097	-0.115	0.004	0.060
Base Case Low BC	1.019	-0.074	-0.099	0.000	0.050
Credit Expansion	1.034	-0.069	-0.065	0.001	0.051
Insurance	1.018	-0.054	-0.006	0.000	0.050

 Credit expansion and insurance reduce consumption drops at the time of emergency expenses.

Policy Intervention Moments

	Ē	$\Delta \bar{m}$	$\Delta \bar{c}_e$	$\bar{\pi}_m$	$\bar{\pi}_e$
Sample	1.095	-0.097	-0.115	0.004	0.060
Base Case Low BC	1.019	-0.074	-0.099	0.000	0.050
Credit Expansion	1.034	-0.069	-0.065	0.001	0.051
Insurance	1.018	-0.054	-0.006	0.000	0.050

- Credit expansion and insurance reduce consumption drops at the time of emergency expenses.
- The insurance scenario is poorly valued by present-focused households. Even when priced at cost, the risk-averse household would still opt-out of insurance (very close to indifferent).

Policy Discussion

Policy Intervention Moments

	- Ē	$\Delta \bar{m}$	$\Delta \bar{c}_e$	$\bar{\pi}_m$	$\bar{\pi}_e$
Sample	1.095	-0.097	-0.115	0.004	0.060
Base Case Low BC	1.019	-0.074	-0.099	0.000	0.050
Credit Expansion	1.034	-0.069	-0.065	0.001	0.051
Insurance	1.018	-0.054	-0.006	0.000	0.050

- Credit expansion and insurance reduce consumption drops at the time of emergency expenses.
- The insurance scenario is poorly valued by present-focused households. Even when
 priced at cost, the risk-averse household would still opt-out of insurance (very close
 to indifferent).
- Insurance reduces the (already small) amount households spend on maintenance.

Policy Intervention Moments

	Ē	$\Delta \bar{m}$	$\Delta \bar{c}_e$	$\bar{\pi}_m$	$\bar{\pi}_e$
Sample	1.095	-0.097	-0.115	0.004	0.060
Base Case Low BC	1.019	-0.074	-0.099	0.000	0.050
Credit Expansion	1.034	-0.069	-0.065	0.001	0.051
Insurance	1.018	-0.054	-0.006	0.000	0.050

- Credit expansion and insurance reduce consumption drops at the time of emergency expenses.
- The insurance scenario is poorly valued by present-focused households. Even when priced at cost, the risk-averse household would still opt-out of insurance (very close to indifferent).
- Insurance reduces the (already small) amount households spend on maintenance.
- Whereas, credit is just, if not more, valuable than removing auto expense risk.

- Automobile expense risk results in large consumption drops for households low in liquid wealth who are also credit constrained.
- A standard consumption-savings model would not generate this behavior given observable risk.
- High time-discount rate can rationalize household behavior by inducing low savings.
 In addition to binding credit-constraints, can generate consumption drops.
- Policy alternatives that promote preventative behavior or require reducing consumption would have a hard time overcoming present focus.
- Credit availability can preserve consumption levels and maintain access to employment income.
- Alternative transportation can also implicitly insure employment access.

Event-Study & DnD Regression Table

Event-Study Estimates

Dependent Variables: Model:	Consumption (1)	Credit Card Balance (2)	Auto Repair Expense (3)
Variables			
1-Month	-0.0949***	0.1113***	0.3125***
	(0.0102)	(0.0141)	(0.007)
Fixed-Effects			
Individual	Yes	Yes	Yes
Month	Yes	Yes	Yes
Year	Yes	Yes	Yes
Matched Control	No	No	No

Matched DnD

Robustness #1

$$y_{it} = \delta j + \sum_{i=0}^{12} eta_j$$
auto repair event $_{it} + lpha_i + lpha_t + \epsilon_{it}$

Reduced Forr

Event-study labor (left) and gas (right) for the low liquid group.

Reduced Form

Reduced Form:

Reduced Form:

Dependent Variables:	Consumption					
Model:	(1)	(2)	(3)	(4)		
Variables						
1-Month	-0.0843***	-0.0928***	-0.0498***	-0.0151		
	(0.0202)	(0.0111)	(0.0107)	(0.0094)		
Fixed-Effects						
individual	Yes	Yes	Yes	Yes		
month	Yes	Yes	Yes	Yes		
year	Yes	Yes	Yes	Yes		
matched control	Yes	Yes	Yes	Yes		
y-c Threshold	≤ 0.3	≤ 0.4	≤ .75	_		
% of Below Median Income Sample	11%	28%	51%	100%		
% of Full Sample	5%	10%	20%	50%		

Reduced Form

Summary Statistics

	Full Sample	Below Median	Low Liquid Wealth
Labor Income	5461.8	3107.1	2165.1
	(8.332)	(3.965)	(4.26)
Consumption	5225.7	2629.6	1916.5
	(10.5)	(3.942)	(4.685)
Borrowing Limit	7655.6	3623.1	2547.2
	(7.144)	(5.577)	(7.877)
Auto Expense	66.92	36.3	25.15
	(0.5994)	(0.4816)	(0.6223)
1(Auto Expense≥200)	0.0902	0.0640	0.0523
	(0.0003)	(0.0005)	(0.001)
1(Auto Expense≥400)	0.0520	0.03328	0.0243
	(0.0002)	(0.0004)	(0.0006)
Gas Expense	170.1	116.8	98.59
	(0.232)	(0.321)	(0.4611)
Medical Expense	83.88	35.97	23.01
	(0.452)	(0.417)	(0.568)
1(Medical Expense≥200)	0.1527	0.0826	0.0602
,	(0.0004)	(0.0006)	(0.0011)
1(Medical Expense≥400)	0.06305	0.0261	0.0155
·	(0.0002)	(0.0003)	(0.0005)
N	23121	6190	2553
NT	800420	174838	48544

• Compensating variation is the present day wealth that the household would require to match to scenario with the policy intervention.

$$V_1(m_1 + \lambda(m_1)) = V_2(m_1)$$

- Average over $\int \lambda(m_1) dm$ given the wealth distribution for the most constrainted group.
- Cost is present value of average individual monthly interest payment and monthly insurance premium, calibrated by default rate and expected insurance payout.

	Policy Intervention						
	Credit	Insurance Insurance Insurance		No Risk			
		Emergency	Emergency	Emergency & Maintenance			
		Only	& Maintenance	No Deductible			
Compensating	0.342	009	-0.033	-0.044	0.188		
Variation	(\$752)	(-\$20)	(-\$66)	(-\$97)	(\$414)		
Cost ($\beta = .302$)	0.002	0.115	0.126	0.203	_		
Present-Value	(\$5)	(\$253)	(\$277)	(\$447)	_		

